机房360首页
当前位置:首页 » 技术 » UPS技术:无变压器技术解析

UPS技术:无变压器技术解析

来源:中国绿色数据中心 作者:张广明 更新时间:2009/12/17 16:55:59

摘要:“高频机”。这种机型集中体现了UPS电路技术的进步,代表着UPS技术的发展方向。与传统的带输出变压器的UPS相比,它在进一步缩小体积、减轻重量、改善性能、提高效率、降低成本等方面,都取得了明显的改善和进步。


    三、 无输出变压器UPS的电路形式

    无输出变压器UPS视设计功率的大小,所用的具体电路形式也不尽相同,这里仅就大功率无输出变压器UPS的主电路结构形式(见图14)来讨论它是如何完成三相四线输出和系统升压功能的,因为要求三相四线输出和系统升压是传统UPS必须带输出变压器的两个根本理由。当新的电路拓朴结构本身具备这两个功能时,输出变压器也就自然没有存在的必要了。


    图14主要表示了与是否需要变压器这一论题有关的电路框图,输入部分是IGBT-PFC整流电路,后面部分是三相半桥逆变电路,中间是电池配置示意图。这里电池组用了两组400V电池组,串联后直接跨接在直流母线上。当然也可用一组400V电池组,那么就需要在直流母线和电池组之间配置一个独立的可双向工作的DC/DC变换器,市电正常时,由800V降压给电池组充电,当市电停电时,反向升压给半桥逆变器提供800V工作电压。

    下面主要叙述IGBT-PFC整流电路和三相半桥逆变电路的工作状态。

    1、无输出变压器UPS是如何向负载提供三相四线制电压的
图14中,输出半桥逆变电路由三组IGBT桥臂组成,每组与公用电容(电池)电路组成单相半桥逆变器。三个半桥电路可独立输出功率,由他们形成的三个50Hz单相正弦波电压彼此相差120º,所以只要看一下一个半桥电路的工作过程,就可了解三相电路的工作状态。

    如图15所示,假定桥臂的上面的IGBT用VT1和VD1表示,下面的IGBT用VT2和VD2表示,与电池并连的电容分别是C1和C2,续流电感为L。


    图15所示为主逆变器逆变状态等效电路及工作过程。我们分析其工作过程时,先按输出电压正半周和负半周把它分解为两个降压型开关电路(Buck)。在输出电压的正半周时,降压开关电路由开关管VT1、续流二极管VD2和电感L组成。VT1导通时电容C1上的正电压(400V)通过电感L向负载输出功率,电感L中的电流线性上升;当VT1由导通转为截止后,由于电感L的续流作用,感应电压使VD2导通,续流电流流经电容C2,其电流方向实际上是给电容C2充电。在输出电压的负半周时,降压开关电路由开关管VT2、续流二极管VD1和电感L组成。VT2导通时,电容C2上的负电压(-400V)通过电感L形成输出电压的负半周,电感L中电流线性上升,VT2由导通转为截止后,由于电感的续流作用使二极管VD1导通,其电流方向实际上是给电容C1充电。在电路中,输出电容C是容量不大的交流滤波电容器,设置它的主要目的是与电感L一起滤除逆变器高频(15KH左右)开关脉动电压和干扰成分,当开关管的控制波形按正弦规律变化(SPWM)时,输出电压肯定是平滑的正弦波。

    由图15所示的工作过程和输出电压波形可知,三个半桥电路可分别输出三个稳定的正弦波电压,控制电路使三个稳定的正弦波电压相位差为120º,于是就形成了三相四线制输出,公共零线则是由直流母线的电容中点引出,而无需再配置输出隔离变压器。

    2、PFC技术可同时完成输入功率因数校正和升压功能

    采用高频整流技术(IGBT-PFC)同时完成对输入功率因数校正和提升电压的功能,是无输出变压器UPS电路技术的另一重要的标志性的特点。PFC技术已经很成熟,根据不同的应用场合和不同的性能要求,其电路拓扑形式也不尽相同,但其基本原理是是相同的,具有功率校正功能的电路有降压式、升/降压式、反击式、升压式(Boost)四种形式,在UPS设备中,为了同时完成对输入功率因数校正和提升电压的功能,自然就采用了升压式(Boost)电路。

    图16是单相升压式(Boost)电路原理。图中的C1为高频小容量电容器,用以消除开关管在高频开关时产生的传向电网的干扰。C2是大容量直流电解电容器。与一般AC/DC整流变换所不同的是,在桥式整流与大容量直流电容之间加入了PFC电路环节,其目的是使输入电流跟随输入电压按正弦规律同相位变化。PFC环节由电感L、开关管VT和二极管VD以及相应的控制电路组成,控制电路接收输入电压波形频率和相位、输入电流波形和数值、输出直流电压幅值3种反馈信号,并以PWM方式控制开关管的导通和截止,其工作过程如下:功率开关管VT导通时,二极管VD因反向偏置而截止,输入电压通过开关管VT向电感L充磁,电感电流(即此时的输入电流)IL的变化规律直接取决于电感L值和此时的输入电压瞬时值,其增加值则同时与L值、此时刻输入电压的瞬时值及开关管导通时间有关。开关管VT截止时,由于电感L的续流作用而感应一个电压叠加在输入电压上,使二极管VD正向导通,电感L将贮存的磁能转化为电能向电容C2充电并向负载输出,输入电流IL下降,IL下降速率与电感L值、此时刻输入电压瞬时值,以及负载(即直流电压U2的输出负载)大小有关,其减小值除取决于以上因素外,还与开关管VT的截止时间有关。显然,当输入电压U1以正弦规律变化时,控制电路以PWM方式对开关管VT进行控制,当工作频率足够高(例如15~20kHz)时,输入电流必然是一个与输入电压同相且波形相同的正弦波。


    对于三相输入的大功率传统双变换UPS,其输入电路是三相整流形成统一的直流母线(同时配备一组蓄电池),输入功率因数校正和升压原理与单相相似,电路形式有由三个单相PFC组合式、单开关三相PFC、三开关三相PFC、六开关三相PFC等多种拓扑结构形式。图14中的输入电路就是六开关(IGBT)三相PFC原理电路。

    六开关三相PFC是由六只开关功率器件组成的三相PWM整流电路,图17是其原理电路。每个桥路由上下两只开关管及与其反向并联的二极管组成,每相电流可通过该相桥臂上的这两只开关管控制。如A相电压为正时,VT4导通使电感La上电流ia增大,电感La充电储能;VT4关断时,电感La感应电压叠加在输入电压UA上(升压),使与VT1并联的二极管VD1导通,电流ia通过VD1流向负载,在电感能量释放过程中电流ia逐渐减小。同样A相电压为负时,可通过VT1和VT4反并联的二极管VD4对电流ia进行控制。


    六开关三相PFC原理电路的输入电压是380V,峰值是537V,所以此电路的输出直流电压可升至800V(±400V),此值正是UPS输出三相半桥电路所需要的直流母线电压。

本文地址:http://www.jifang360.com/news/20091217/n40063648.html 网友评论: 阅读次数:
版权声明:凡本站原创文章,未经授权,禁止转载,否则追究法律责任。
相关评论
正在加载评论列表...
评论表单加载中...
  • 我要分享
更多
推荐图片