机房360首页
当前位置:首页 » 蓄电池 » 蓄电池分类及工作原理

蓄电池分类及工作原理

来源:中国绿色数据中心 作者:机房360 更新时间:2009-7-16 16:17:46

摘要:把物质的化学能转变为电能的设备,称为化学电池,一般简称为电池。以酸性水溶液为电解质称为酸蓄电池,以碱性水溶液为电解质者称为碱电池。阀控式铅酸蓄电池的化学反应原理就是充电时将电能转化为化学能在电池内储存起来,放电时将化学能转化为电能供给外系统。


  
  第二节阀控铅酸蓄电池结构和工作原理
  
  阀控铅蓄电池的基本结构如下图所示。它由正负极板、隔板、电解液、安全阀、气塞、外壳等部分组成。正负极板均采用涂浆式极板,活性材料涂在特制的铅钙合金骨架上。这种极板具有很强的耐酸性、很好的导电性和较长的寿命,自放电速率也较小。隔板彩超细玻璃纤维制成,全部电解液注入极板和隔板中,电池内没有流动的电解液,即使外壳破裂,电池也能正常工作。电池顶部装有安全阀,当电池内部气压达到一定数值时,安全阀自动开启,排出气体。电池内气压低于一定数值时,安全阀自动关闭,顶盖上还备有内装陶瓷过滤器的气塞,它可以防止酸雾从蓄电池中逸出。正负极接线端子用铅合金制成,采用全密封结构,并且用沥青封口。
  
  在阀控铅蓄电池中,电解液全部吸附在隔板和极板中,负极活性物质(海绵状铅)在潮湿条件下活性很多,能与氧气快速反应。充电过程中,正极板产生的氧气通过隔板扩散到负极板,与负极活性物质快速反应,化合成水。因此,在整个使用过程中,不需要加水补酸。
  
 阀控式铅酸蓄电池的基本原理
  
  一、化学反应原理
  
  阀控式铅酸蓄电池的化学反应原理就是充电时将电能转化为化学能在电池内储存起来,放电时将化学能转化为电能供给外系统。其充电和放电过程是通过化学反应完成的,化学反应式如下:
  
   

  从上面反应式可看出,充电过程中存在水分解反应,当正极充电到70%时,开始析出氧气,负极充电到90%时开始析出氢气,由于氢氧气的析出,如果反应产生的气体不能重新复合利用,电池就会失水干涸;对于早期的传统式铅酸蓄电池,由于氢氧气的析出及从电池内部逸出,不能进行气体的再复合,是需经常加酸加水维护的重要原因;而阀控式铅酸蓄电池能在电池内部对氧气再复合利用,同时抑制氢气的析出,克服了传统式铅酸蓄电池的主要缺点。
  
  二、氧循环原理
  
  阀控式铅酸蓄电池采用负极活性物质过量设计,AGM或GEL电解液吸附系统,正极在充电后期产生的氧气通过AGM或GEL空隙扩散到负极,与负极海绵状铅发生反应变成水,使负极处于去极化状态或充电不足状态,达不到析氢过电位,所以负极不会由于充电而析出氢气,电池失水量很小,故使用期间不需加酸加水维护。
  
  阀控式铅酸蓄电池氧循环图示如下:
  
  

  可以看出,在阀控式铅酸蓄电池中,负极起着双重作用,即在充电末期或过充电时,一方面极板中的海绵状铅与正极产生的O2反应而被氧化成一氧化铅,另一方面是极板中的硫酸铅又要接受外电路传输来的电子进行还原反应,由硫酸铅反应成海绵状铅。
  
  在电池内部,若要使氧的复合反应能够进行,必须使氧气从正极扩散到负极。氧的移动过程越容易,氧循环就越容易建立。
  
  在阀控式蓄电池内部,氧以两种方式传输:一是溶解在电解液中的方式,即通过在液相中的扩散,到达负极表面;二是以气相的形式扩散到负极表面。传统富液式电池中,氧的传输只能依赖于氧在正极区H2SO4溶液中溶解,然后依靠在液相中扩散到负极。
  
  如果氧呈气相在电极间直接通过开放的通道移动,那么氧的迁移速率就比单靠液相中扩散大得多。充电末期正极析出氧气,在正极附近有轻微的过压,而负极化合了氧,产生一轻微的真空,于是正、负间的压差将推动气相氧经过电极间的气体通道向负极移动。阀控式铅蓄电池的设计提供了这种通道,从而使阀控式电池在浮充所要求的电压范围下工作,而不损失水。
  
  对于氧循环反应效率,AGM电池具有良好的密封反应效率,在贫液状态下氧复合效率可达99%以上;胶体电池氧再复合效率相对小些,在干裂状态下,可达70-90%;富液式电池几乎不建立氧再化合反应,其密封反应效率几乎为零。

本文地址:http://www.jifang360.com/news/2009716/n56401345.html 网友评论: 阅读次数:
版权声明:凡本站原创文章,未经授权,禁止转载,否则追究法律责任。
相关评论
正在加载评论列表...
评论表单加载中...
  • 我要分享
更多
推荐图片